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THE NOTION OF A HEAVY SY~ETRI~AL BODY WITH FLEXIBLE RODS 
ABOUT A FIXED POINT * 

V.G. VIL'KE 

The motion of a symmetrical solid about its centre of mass is considered 
in the case, when four mutually orthogonal flexible rods are fixed to it 
in the equatorial plane of the body ellipsoid of inertia. The deformations 
of rods is defined by the linear theory of the bending of thin viscoelastic 
rods, and lead to the evolution of the motion of the solid, i.e. the solid 
approaches steady rotation about the vertical. the approximate equations 
in Andoyer variables that define the system evolution are obtained by the 
method of averaging. The stability of the steady rotations obtained is 
investigated. 

The stability of steady rotations of a solid with a single fixed point and with flexible 
rods attached to it was investigated in /l, 2/. It was shown in /3/ that the longitudinal 
deformations of elastic rods fixed toaheavy symmetrical solid rotating about a fixed point 
results in the body approaching a steady rotation about the vertical axis. In that paper an 
approximate equation was also obtained, which defined the evolution of motion in terms of the 
Andoyer variables by the method of averaging. 

Let AI = &# CI, where (AI, &, Cl are the principal central maments of inertia of the 
solid about the point 0 (the centre of mass of the body), and let two paris of elastic rods 
be positioned along the principal axes of the ellipsoid of inertia 0x1 and oxa. Using the 
linear theory of the bending of thin rectilinear rods, we determine the radius vector of a 
point of the rod in the system of coordinates Ox~z,x, in the form 

The kinetic energy and angular momentum of the system are defined by the relations 

where a,(~, %, aa*) is the angular velocityof rotation of the body,Ji is the inertia tensor 

of the body, and p is the linear density of the rod material, which is assumed homogeneous. 

The angular velocity and the inertia tensor are considered in the moving system of coordinates 

OZl+Z,. 
The position of the moving coordinate system relative to the fixed system O~I!$& (the 

axis C& is vertical) is defined by Euler's angles. The generalized momenta and Routh's 

functional are defined by the relations 
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where cp,$,@ are the angles of natural rotation, precession, and nutation, respectively, 

e,,e+,ee are the unit vectors along the axes of rotation corresponding to Euler's angles, 

and II, E[u] are the potential energy functionals of the gravitational field and elastic 

deformations. The Xouth functional is numerically equal to 

R- -~(J[u]ru,co)-+~ (R;a+R,‘a)~ds+l’I+E[~] 
K 

where J[ul is the inertia tensor of the system consisting of the solid and deformed rods, 

Note that 

J[u]o=G-G,,, G,g== 15 [Ri x R,‘fpds 
K iml 

R- -~(G--G,,J’ltullG--G,))-~ (ux-+us-)pb+ n+E[ul f 
x 

We will change from canonical variables pe, pip, pet cp, $,0 to the mdoyer canonical vari- 

mes II, I,, I,, (Pi, test (p3 I using a canonical transformation. We note first that the operator 

p" [d can be represented in the form 

J-’ [u) = [Jt, (E + J;;“Jx + &‘J&-l= 
(1) 

[E - &‘J, - &‘Js + (&‘JI + .&‘J$ + . . .] J;;’ 

E = diag (1, 1, 1}, Jo = diag (A, A, C) 

A=&+ ss*pds, C-C,+2 f9pds 

Jl = (Jjj),,K J$ = 0, i=1,2,1; J$==- s(uzr+utl)pds 

Jg = s(uzs2 + uQ) p ds, J;;’ = 0, J$ = - 5 ~~~u~pds 
K 

J$=-. xS WbPdS 
K 

We shall henceforth assume r+ to be small and restrict (1) to 

with respect to utf 

J-1 f u] a &? - ~‘J&” 

terms that are linear 

We will represent the angular momentum G in terms of the Andoyer variables in the form 

G = (fm sin 91, -r/Is* - Ila cos (pl, II) 
and define the functionals l-l and E[u] by the formulas 

n=pg S(ul-l-utIed.9 
K 

where e<y,,y,,y,) is the unit vector along the vertical axis in the system of coordinates 

ox,z,x,, g is the acceleration due to gravity, and N is the rod bending rigidity, equal to the 
product of the modulus of elasticity of the rod material and the moment of inertia of the 

rod cross-section (the rod is assumed to be unformly rigid). The unit vector directional 

cosines relative to the vertical are expressed in terms of the Andoyer variables in the form 

/d/ 
(2) 
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a = &?I$ T/Zp? - Zl?, b z I&’ +fZm 

c =&I l/m-_ d = ZIZ&? 

e = r;* T/(ZQ - rg) (122 - 132) 

The system equations of motion 

I'= -V,R[I, 'p,u', u] 

'p *=Pp~I,rp,u'uj 
133 

contain in the last equation the small parameter e = N-1. 
pond to the linear model of internal viscous friction 

The dissipative forces Q,corres- 

If s =0 (the rods are not deformed), then 

u ss 0, R [I, 1p, 0, 01 = $A' (J," - I19 + Y,C_'1,2 

and the equations of motion take the form 

1, = 0, i = 1, 2, 3, vl' = (A - C)d’Y?IZ 1 
'pz' = d”Z,, rpa’ =0 

(4) 

The solutions of (4) define the regular precession of a symmetric solid in the Euler case. 
The solution of the last of Eqs.(3), when I = I,, 'p = ip'(f,)t + cp (0) is obtained in the form of 

the series u 11 = s@*+') + S?Uij@) f . f ., i = 2, 2,j = 1,2,3, j# i, where the functions I&l(l) sat- 
isfy the equation 

a%$ l%s,~!) 
7+xX&" E=-sPeW,Oj-*Pegyj, iBiT jx-l*2,3y j#i (5) 

ol=d-l Alps-- Zla sinmpl, 0~ = A-’ ~/~~~cos~, 

oQ = F’Z, + Q’ = A-F (2d - C) I, 

If z& is a solution of (51, then its particular solution, that defines the forced bend- 
ing oscillations of rods, has the form 

(6) 

Henceforth, assuming kql' and x(p,' to be small, we shall restrict the series (6) to 
the'first two terms, and obtain 

t@) z --pe {10@3,- x (@f@J)‘l 91 (8) f g bf - x’%.) % @)I (7) 

where when K = [--b,b] 

When determining the functions +L,+arthe kinematic boundary conditions 

(the conditions of attachement 
tions 

at the origin of coordinates) and the dynamic boundary condi- 

(no external forces at the rod free ends) were taken into account. Note that the dynamic 

boundary conditions are contained in the last equation of system (3). 
For variables I,, I*, I, Eqs.(3) have the form 

(8) 
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To determine the evolution of the action variables it is necessary to substitute solutions 
(7), restricted to terms of the order of E, into Eqs. (8), and average over the angle vari- 

ables (F*,Q?z 151. We then have 

I;=-- (A - C) ix (ia9 - 1x2) p1 {I2 - 112 + (2A - C) PIi? -f- (9) 

kJ&‘] - l[tkoI, (I$ - Zaa) [A (ZI + I$) + C (I,* - Ix*)] r;* 

Iz’=-... kz (Is2 - Ia2) I;” [s/J (Iz2 - I,a) + ATI*], 13' = 0 

kl = p%eXA-V1 S e1 (a) ds> 0, k,= pa~@A-lC-l S % (s) ds > 0 
K K 

Fran the third of &qs.(Q) it follows that the projection of the angular momentum vector 
of the system on the vertical 1, remains constant, and from the second that the angular momentum 
of the system I, approaches I,, i.e. the body approaches steady rotation about the vertical. 

Let us determine the limit values of I,. Equating to zero the right side of the first 
of Eqs.(Y) and assuming that I,.=Ia, we obtain the equation 

(A - C)I, (lee - Ila) [k, (Z*” - I,a + (24 - q c-VIZ) + k,Z~-Y = 0 

which shows that I,= O,I, = I8 are the steady values. The frst of them is steady when A >C 
and unsteady when A CC, and, conversely, the second is stable when A <C and unstable when 
A > C. 

To follow the evolution of the angular momentum vector, we will obtain an equation describ- 
ing the variation of the angle 'pa. We have 

Taking (2) and (7) into account, after averaging the right side of (lo), we obtain 

(ps' - kJ.& (Ias - 3Z?), ks = %pagne S ti (s) ds > o (11) 
K 

The angle 9,(t) is obtained by simple integration, after integrating Eqs. (9). 
It follows from (11) that the end of vector G describes in the fixed horizontal plane a 

helix-like curve. Since a changein the direction of rotation is possible during the motion, 
the quantity 1,s - 31,' may change its sign. 

Let us determine the position of the fixed axes of rotation in the equatorial Planeof 
the ellipsoid of inertia, when A >C and I, approaches zero. For small 1, averaging over 
the angle qpl becomes inadmissible. Averaging the first of Eqs.(8) only over the angle (pz and 
assuming that I, = I,, we obtain the equation 

AC (A - c)-%px” 2= k41z4 sin 4g+ - k,l,eR’ co.9 2% 112) 

k,=- : @A-’ 
5 

& (s) da> 0, ks --xp%A-” 5 el (s) ds> 0 
K 

which is accurate to terms linear respect to 'pr',f&". 
The equilibrium positions given by (12) are 

'pr = {'i$wn}, w = {II&F + ~/*nm), m = 0, *i, * * . 

The first series of solutions corresponding to unstable steady rotations about the Oz, 
and Ox2 axes, while the second represents stable steady rotations about axes rotated by an 
angle 814 relative to the first. When rotating about the axes 0% am*, the rods are straight, 
and when rotating around axes turned relative to Ox,,Ox, by an angle n/4 they are bent by 
the action of centrifugalinertia forces in the system of coordinates OZ,.QX~. The nature of 
the stability of the positions of equilibrium of the rods that have only longitudinal deforma- 
tions was directlyopposite/3/. 

Note that the conclusions on the stability of steady rotations were obtained on the 
basis of Eq.(12) by the method of motion separation and averaging. It would be desirable to 
check them by investigating the properties of stationary points of variation of the potential 
energy /6/. 
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ON THE CONTROLLED ROTATION OF A SYSTEM OF TWO RIGID BODIES 
WITH ELASTIC ELEREKTS* 

V.E. BERBYUK 

The problem of controlling the plane rotational motions of two rigidbodies 
connected by an elastic rod is studied. One end of the rod is attached to 
the support by a hinge with a spring, the latter modelling the elastic 
compliance of the fastening, and the other end is rigidly joined to the load, 
The Hamilton principle is used to obtain the integrodifferential equations 
and boundary conditions describing the motion of the system support - spring - 
rod - load. The following problem is posed: it is required to rotate the 
system by a given angle by means of the controlling force moment, with 
quenching of the relative oscillations of the load elements which appear 
as a result of the deformability of the rod and of the elastic torsion of 
the spring. Similar problem arise in the study of the dynamics and control 
of the motion of devices used in transporting loads through space (robots, 
manipulators, load lifting machines, etc.). In computing their control 
modes a significant part is played not only by the deformability of the 
elements /l-3/, but also by the elastic compliance of the connecting 
joints /4/. Asymptotic methods are used to botain a solution of the 
control problem in question for two limiting cases: 1) the mass of the 
load carried is much greater than the mass of the rod and support, and 21 
the rod has high flexural rigidity. The results obtained represent a 
development and generalization of the results obtained in /5/. The 
problems of the dynamics and control of oscillating systems with distributed 
parameters were investigated using various types of formulation in a number 
of papers (/5-13/et. al.). 

1. Description of the mode1 and the equations of motion. We consider a mechan- 
ical system consisting of two rigid bodies connected 
by a rod of variable cross-section. The system can 
execute rotational motions in some plane (Fig.1). One 
end of the rod is attached to the support G,,by means 
of a hinge with a weightless spring, modelling the 
elastic compliance of the joint. The other end is 
rigidly fixed to the load G,, whose linear dimensions 
are small compared with the length of the rod. The 

01% -axis, perpendicular to the plane of the motion 
represents the axis of rotation, with respect to which 
the moment of control forces M(t) is applied. We 
introduce the OXYZ coordinate system with origin 
at the centre of the hinge (point 01, rotating in the 
inertial O,X,YIZ, space together with the spring and 
rod. i?e direct the OX axis along the tangent to the 
neutral line of the rod at the point 0, and the OS 
axis along the O,Z, axis of rotation. We assume that 
the motion of the model is described in the framework 

'g.1 
of the linear theory of thin rectilinear, inextensible 
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